
Magnetic field Energy Calculated by Magnetic Vector Potential in 

Open-Loop Problems 
 

Chouwei NI1, Zhibin ZHAO1, and Xiang CUI1, Senior Member, IEEE 
 

1State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power Uni-

versity, Beijing 102206, China, nichouwei@ncepu.edu.cn 

 

In closed-loop problems, magnetic field energy might be calculated by many methods, including magnetic field method and 

magnetic vector potential method. But previous work showed that the two mentioned methods may not reach an agreement in open-

loop problems. Therefore, this paper deduces calculative formula in open-loop problem and finds that the effect of displacement 

current is the key reason. The method of magnetic vector potential with displacement current is proposed. Analytical analysis and 

numerical experiment are given and show that validity of this method. 

 
Index Terms—displacement current, magnetic field energy, magnetic vector potential, open-loop problem  

 

I. INTRODUCTION 

PEN loop problems that analysis in un-closed loops are 

common and practical because of unknown current return 

path. Ruehli’s works [1-2] showed that open loop problems 

could be as well solved by both considering inductive and 

capacitive parts in PEEC model, which means that the open 

loop could also be closed capacitively and is a real physics 

based model. 

Therefore, magnetic field energy could be used for 

calculation of the inductive part [3], as shown in (1). 
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In many cases, the last expression in (1) which involves 

magnetic vector potential A is often applied in calculation, 

where J is the conduction current in closed loop problem. 

However, in open loop problems Kalhor’s works [4-5] 

showed that surface charges accumulating with time need to 

be placed at both ends of a conductor segment and generate 

displacement current in space. In addition, Ni’s works [6] 

illustrated that those two methods in (1) may obtain different 

results in open-loop problems without consideration of 

displacement current. So (1) might be transformed as follows 

in open-loop problems, 
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where subscript C and D represent conduction current and 

displacement current respectively. 

This paper presents a method to calculate magnetic field 

energy by vector potential A in open-loop problems. Section II 

shows formulas of different parts in (2). In Section III, 

numerical experiment is made to compare the different parts in 

(2). Different methods shown in (1) are also compared. 

Results show that displacement current is a necessary part in 

open loop problems 

II. DERIVATION OF FORMULAS 

As illustrated in (2), there are four parts in the calculation of 

magnetic field energy. For a simple example in Fig 1, JC is 

conduction current in the conductor and uniformly distributed 

on cross section of the conductor 

 
Fig. 1. A cylindrical conductor segment with length l and radius r. 
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where r is space vector pointing to field point. JD is the 

displacement current generated by charges accumulating in the 

end surfaces M and N. 
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where rSN and rSM are space vector pointing from surface M 

and N to field point. AC is magnetic vector potential generated 

by conduction current JC. 

   0 C

C
V

d
4 v

v






J

A r
r r

 (5) 

AD is magnetic vector potential generated by displacement 

current JD [6]. 
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By combining (3)-(6), the value of (2) may be obtained. 
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III. NUMERICAL EXPERIMENT 

For the example in Fig 1, different methods in (1) are 

applied and compared in Fig 2, including the method of 

magnetic field and the method of magnetic vector potential. 

O 



 
Fig. 2. Comparison of different methods for model in Fig 1. 

where the horizontal axis is the ratio of length l to radius r, 

which means conductors with different shape. The vertical 

axis is the magnetic field energy per meter, which means the 

value of energy W divides the length l. FSV tool [7-8] is used 

for analyzing the agreement of these two curves in Fig 3 

 
Fig. 3. Results of different parts in (7) for model in Fig 1. 

According to evaluation of FSV method, the matching 

between these two methods is “excellent”(where ADMi<0.1), 

whereas the values of GRADE and SPREAD are both 1 under 

default threshold of 85%. Hence the proposed method is 

verified. Then each part of (7) is compared in Fig 4. 

 
Fig. 4. Results of different parts in (7) for model in Fig 1. 

Results show that absolute values of WCC, WDC and WDD 

are very close to each other. So the following relationship 

might be obtained 
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Combining (7) and (8) 
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Therefore, the contribution of displacement current need to 

be considered in open-loop problems.  

IV. CONCLUSION 

This paper presents a method for calculation of the 

magnetic field energy in open-loop problems. According to the 

method in closed loop problems, the necessary of 

displacement current JD is discussed, which shows JD might 

obviously influence the results. The proposed method is 

compared with existing method and verified in numerical 

experiment.  
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